Journal of Organometallic Chemistry, 93 (1975) 15–20 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# **ORGANISCHE METALLKOMPLEXE**

# XI\*. NOTIZ ZUR STRÜKTUR VON $\beta$ -DIKETON-QUECKSILBER KOMPLEXEN

#### KLAUS DIETRICH, HANS MUSSO

Institut für Organische Chemie der Universität D-7500 Karlsruhe, Richard-Willstätter-Allee, Karlsruhe (B.R.D.)

## und RUDOLF ALLMANN

Fachbereich Geowissenschaften der Universität D-3550 Marburg/Lahn, Lahnberge (B.R.D.)

(Eingegangen den 17. Januar 1975)

### Summary

In the crystalline dimer of bis(dipivaloylmethyl)mercury there are strong Hg-C (2.13 Å) and weak Hg-O (2.70 Å) bonds. In the dimeric trimethyl-4,6nonanedionylplatinum, however, the bond strengths are inverted (Pt-C, 2.39 Å, and Pt-O, 2.14 Å). Thiodipivaloylmethane is found to be coordinated to mercury and silver most strongly by its sulfur atom; it chelates these metals less symmetrically than the normal complexes with Ni, Cu, Pd and Zn as shown by spectroscopic data.

#### Zusammenfassung

Im kristallinen Dimeren des Bis-(dipivaloylmethan)-Quecksilber liegen starke Hg—C (2.13 Å) und schwache Hg—O (2.70 Å) Bindungen vor. Im dimeren Trimethyl-nonan-4,6-dionyl-Platin sind die vergleichbaren Bindungsstärken jedoch umgekehrt Pt—C (2.39 Å), Pt—O (2.14 Å). Im Gegensatz dazu koordiniert Thio-dipivaloylmethan das Quecksilber und Silber am stärksten mit dem Schwefelatom. Aus den Spektren geht hervor, dass diese beiden Metalle weniger symmetrisch cheliert werden als in den normalen Komplexen, z.B. Ni, Cu, Pd und Zn.

Die überwiegende Mehrheit der leichten und schweren Metalle lagern Acetylaceton und andere  $\beta$ -Diketone wie Dipivaloylmethan und Dibenzoylmethan

<sup>•</sup> X. Mitteilung siehe ref. 1.

als zweizähnige Liganden symmetrisch über beide Sauerstoffatome an (Typ I) [2]. Inzwischen sind einige Verbindungen bekannt geworden, in denen  $\beta$ -Diketone über das mittlere C-Atom an das Metall gebunden sind (Typ II) oder zwei Liganden in beiden Bindungstypen nebeneinander vorliegen (III) [3]: u.a. an Trimethylplatin [4-6] (III), an Quecksilber [7, 8] und an Quecksilberacetat [9, 1] (II) sowie an Triphenylphosphinpalladium [10] (III).



In dieser Mitteilung wird auf die Analogie und die Unterschiede zwischen  $Hg(DPM)_2(V)$  [8] und  $(CH_3)_3Pt(ND)(VI)$  bzw. (AcAc) [6, 11, 12] hingewiesen (DPM = Dipivaloylmethyl, ND = nonan-4,6-dionyl). Weiterhin werden Versuche beschrieben, in denen es gelang, das Quecksilber vom C-Atom des  $\beta$ -Diketons an das Heteroatom zu locken, in dem man einen Sauerstoff durch Schwefel ersetzt.





(VI) (CH<sub>3</sub>)<sub>3</sub> Pt(ND)

Hg(DPM)<sub>2</sub> liegt in Lösung überwiegend als monomeres Molekül II vor, und das NMR-Spektrum lässt in CDCl, bei  $-40^{\circ}$ C am C-H Signal bei 4.86 ppm die H-C-199Hg Kopplung von 221 Hz erkennen. Im Kristall (Atomparameter in Tab. 1) bilden sich Doppelmoleküle der Struktur V [8]; die beiden C–Hg Bindungen sind mit 2.13 und 2.18 Å Länge deutlich fester als die Nebenvalenzen zum Sauerstoff mit 2.70 Å, denn die normalen Bindungsabstände betragen: C-Hg 2.07-2,11 Å und O-Hg 2.03-2.07 Å [1, 13]. Der Doppelbindungscharakter der C=O Gruppen ist deutlich ausgeprägt (IR  $\nu$ (C=O) 1672 cm<sup>-1</sup>). Schätzt man die Bindungsstärken n mit der Gleichung  $d(n) = d(1) - 0.7 \log n$  [14] ab  $(mit d(1) = 2.02 \text{ Å} f \text{ür Hg} - 0 \text{ und } 2.12 \text{ Å} f \text{ür Hg} - C (sp^3))$ , so ergibt sich f ür die Hg—C-Bindung zum freien DPM-Ligand in V eine normale Einfachbindung (d = 2.13 Å), dagegen ist die Hg-C Bindung mit d = 2.18 Å zu dem anderen DPM-Liganden geschwächt ( $n \sim 0.8$ ). Dafür bildet dieser zwei schwache Hg-OBindungen von je 2.70 Å Länge aus, was einer Bindungsstärke von ungefähr 0.1 entspricht, so dass sich als  $\Sigma n$  für diese 3 Bindungen zum Hg-Atom wieder 1.0 ergibt.

In Chloroformlösung weist ein schwaches NMR-Signal bei 5.75 ppm darauf hin, dass Hg(DPM)<sub>2</sub> zu ca. 5% in einer Enol-form im Gleichgewicht mit II vorliegt [8]. Bei der Dissoziation einiger Doppelmoleküle V in Lösung erfolgt offenbar die Spaltung an der geschwächten C—Hg Bindung und nicht an den Hg—O Nebenvalenzen, von denen sich dann eine zu einer Hg—O Hauptvalenz wie in Formel IV verfestigen sollte. Nach Fish [15] besitzt die Enolform tatsächlich die Konstitution IV, und ihr Gehalt beträgt in Äthylalkohol ca. 50%. Es ist naheliegend anzunehmen, dass die Gleichgewichtseinstellung zwischen II und IV über Doppelmoleküle V erfolgt. Das konnte jedoch wegen des geringen Gehaltes an IV in Chloroformlösung nicht geprüft werden. Es sei aber bemerkt, dass bei Hg(FOD)<sub>2</sub> in Aceton für die Einstellung des Gleichgewichtes II  $\Rightarrow$  IV ein monomolekularer und somit intramolekularer Verlauf festgestellt wurde [15].

Im  $(CH_3)_3$ Pt(AcAc) (VI), das auch in Lösung dimer auftritt, betragen die entsprechenden Werte für das C-H Signal 4.65 ppm und J(H-C-Pt) 42 Hz

| gebenen B | ndungslangen si | che [8].   |           |                |                    |        |          |                   |             |                     |         |                    |
|-----------|-----------------|------------|-----------|----------------|--------------------|--------|----------|-------------------|-------------|---------------------|---------|--------------------|
| Atom      | ×               | v          | N         | <u>ō</u> (xyz) | B(Å <sup>2</sup> ) | Atom   | ×        | y                 |             | 2                   | םֿ(איז) | B(Å <sup>2</sup> ) |
| C(1)      | -0.197(3)       | 0.137(3)   | 0.171(3)  | 32             | 3.6(7)             | C(6)   | 0.176(4  | .0-0.35           | 32(3)       | 0.304(4)            | 40      | 5.6(9)             |
| C(2)      | -0.091(3)       | 0.118(2)   | 0.114(3)  | 29             | 2.8(6)             | C(1)   | 0.110(4  | 0.26              | 92(3)       | 0.323(4)            | 39      | 5.6(9)             |
| C(3)      | 0.037(3)        | 0.082(2)   | 0.212(3)  | 29             | 2.7(6)             | C(8)   | -0.026(3 | 0.20              | 37(2)       | 0.228(3)            | 30      | 3,2(6)             |
| C(4)      | 0.170(3)        | 0.111(2)   | 0.189(3)  | 28             | 2.7(6)             | C(0)   | -0.130(5 | 0.28              | <b>6(3)</b> | 0.280(4)            | 37      | 5.0(8)             |
| C(6)      | 0.302(3)        | 0.142(3)   | 0.312(3)  | 31             | 3.4(7)             | C(10)  | -0.276(3 | 0.3               | 14(3)       | 0.190(4)            | 36      | 4.8(8)             |
| C(11)     | -0.203(4)       | 0.073(4)   | 0,294(4)  | 44             | 6.8(11)            | C(61)  | 0.308(0  | Ŭ,                | 01(6)       | 0.424(6)            | 19      | 10.0(17)           |
| C(12)     | -0.343(5)       | 0.112(4)   | 0.043(5)  | 63             | 9.0(13)            | C(62)  | 0.086(7  | -0.46             | 31(6)       | 0.336(7)            | 73      | 14.2(21)           |
| C(13)     | -0.169(4)       | 0.259(4)   | 0.221(4)  | 44             | 6.8(10)            | C(63)  | 0.164(6  | 9                 | 0(8)        | 0,161(7)            | 68      | 12.6(19)           |
| C(61)     | 0.306(4)        | 0.266(3)   | 0.358(4)  | 42             | 6.2(10)            | C(101) | -0.335(6 | 9                 | 21(5)       | 0.267(6)            | 64      | 11.8(18)           |
| C(62)     | 0.426(4)        | 0.133(3)   | 0,280(4)  | 43             | 6.6(10)            | C(102) | -0.295(6 | 10.3              | 71(5)       | 0.042(6)            | 61      | 11.4(17)           |
| C(53)     | 0.306(4)        | 0.072(4)   | 0.442(4)  | 44             | 6.7(10)            | C(103) | 0.3556(  | ) -0.24           | 12(6)       | 0.180(7)            | 11      | 14,4(21)           |
| 0(2)      | -0,105(2)       | 0.137(2)   | -0.005(2) | 23             | 5.1(6)             | (1)0   | 0.194(3  | 0.21              | 16(3)       | 0.417(9)            | 34      | 9.6(9)             |
| 0(4)      | 0.173(2)        | 0.116(2)   | 0.071(2)  | 20             | 4.0(4)             | (0)0   | -0.100(  | 0.28              | 33(3)       | 0.414(3)            | 33      | 9.2(9)             |
|           | *               | ~          | 2         | ā(xyz)         | $B_{11}$           | B22    | B 168    | 2 <sup>B</sup> 13 | B 23        | ā(B)                |         |                    |
| Hg        | -0.0003(1)      | -0.0958(1) | 0.1992(1) | 4              | 2.07               | 2.70   | 2.46 0.  | 50 1.08           | 0.32        | 0.04 Å <sup>2</sup> |         |                    |

BIS-(DIPIVALOYLMETHAN)-QUECKSILBER (Hg(DPM)2 V)

TABELLE 1

Atomparameter nach der letzten Verfeinerung (R = 6.0% mit 2581 Roflexen). Die Stundardabweichungen (in Klammera) beziehen sich jeweilsauf die letzte angegebene Stello, ỡ(xyz) ist die über allo 3 Koordinaten gemittelte absolute Standardabweichung in 10<sup>-3</sup> Å. Zeildaten: P1, a = 10.62(1), b = 12.37(1), c = 10.28(1) Å, α = 90.8(1), β = 11.6(1), γ = 97.8(1)°, Z = 2, D<sub>m</sub> = 1.51 g cm<sup>-3</sup>, D<sub>X</sub> = 1.515 g cm<sup>-3</sup>. Die Wasserstofflagen wurden nicht bestimmt. Wegen der nicht in Formel V ange-

#### TABELLE 2

|        | IR (KBr) | (cm <sup>-1</sup> ) | NMR (CDCl <sub>3</sub> )δ ppm |                       |                                               |      | Massenspektren rel.<br>Intens. (%) |                               |
|--------|----------|---------------------|-------------------------------|-----------------------|-----------------------------------------------|------|------------------------------------|-------------------------------|
|        | ν(C=O)   | ν(C—S)              | нС                            | $+ \langle s \rangle$ | $\rightarrow \stackrel{\circ}{\prec}_{\circ}$ | Δδ   | M⁺.                                | ( <i>M</i> -199) <sup>+</sup> |
| <br>Ni | 1546     | 1150                | 6.72                          | 1.27                  | 1.12                                          | 0.15 | 100                                | 12                            |
| Cu     | 1551     | 1142                |                               | -                     |                                               | -    | 3                                  | ~1                            |
| Pd     | 1551     | 1141                | 6.77                          | 1.36                  | 1,24                                          | 0.12 | 22                                 | 5                             |
| Zn     | 1570     | 1128                | 6.88                          | 1.34                  | 1.19                                          | 0.15 | 21                                 | 34                            |
| Cd     | 1640     | 1107                | 6.77                          | 1.23                  | 1.18                                          | 0.05 | 11                                 | 2                             |
|        | 1602     |                     |                               |                       |                                               |      |                                    |                               |
| Hg     | 1641     | 1096                | 6.72                          | 1.33                  | 1.11                                          | 0.22 | 1                                  | 0.0                           |
| Ag     | 1643     | 1094                | 6.78                          | 1.34                  | 1.12                                          | 0.22 | 0.0                                | 0,0                           |
| н      |          |                     | 6.67                          | 1.30                  | 1.22                                          | 0.08 |                                    |                               |

IR- UND NMR-DATEN UND MASSENSPEKTREN EINIGER METALLKOMPLEXE DES THIODIPI-VALOYLMETHANS

sowie  $\nu$ (C=O) 1613 cm<sup>-1</sup> [12]. Hier liegt der Pt—O Abstand mit 2.14 und 2.16 Å nahe beim normalen Wert von 1.97 Å und die Pt—C Bindung ist mit 2.39 Å (normal 2.02 Å als Mittel der Pt—CH<sub>3</sub> Bindungen) als Nebenvalenz zu betrachten. Auch die C—C—C Abstände im Chelatring deuten darauf hin, dass beim Pt die Tendenz zum normalen Typ I viel stärker ist als beim Hg.

Vergleicht man die Spektren der Komplexe des Thio-dipivaloylmethans [16] mit verschiedenen Metallen, so erkennt man, dass alle in der Tabelle 2 aufgeführten Verbindungen ähnlich gebaut sein müssen, und dass man sie in zwei Gruppen ordnen kann. Die mit Ni, Cu, Pd und Zn bilden normale Chelatkomplexe des Typs VII, der des Cd liegt dazwischen und die mit Hg und Ag müssen weniger stark cheliert sein (Typ VIII). Im NMR-Spektrum des Hg(SDPM)<sub>2</sub> zeigt das C—H Signal bei 6.72 ppm eine normale Lage und keine Kopplung mit <sup>199</sup>Hg. Das Auseinanderrücken der IR-Frequenzen für  $\nu$ (C=O) (1641) und  $\nu$ (C—S) (1096 cm<sup>-1</sup>) deutet darauf hin, dass hier das Hg (und Ag) viel fester an den Schwefel als an den Sauerstoff gebunden ist. Auch die zunehmende Differenz  $\Delta\delta$  der Signale für die t-Butylgruppen muss so erklärt werden. In den Massenspektren macht sich dieser Unterschied ebenfalls bemerkbar; die normalen Chelatkomplexe spalten alle einen Liganden zum Kation IX ab, beim Hg Komplex ist ein *M*-199 Ion als Bruchstück nicht zu erkennen.



Von allen neuen Verbindungen wurden passende Elementaranalysen erhalten [17]. Über die Darstellung und weitere Einzelheiten soll später berichtet werden.

#### Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung.

#### Literatur

- 1 R. Allmann und H. Musso, Chem. Ber., 106 (1973) 3001.
- 2 B. Bock, K. Flatau, H. Junge, M. Kuhr und H. Musso, Angew. Chem., 83 (1971) 239; Angew. Chem. Intern. Edit., 10 (1971) 225.
- 3 D. Gibson, Coordination Chem. Rev., 4 (1969) 225.
- 4 A.C. Hazeli, A.G. Swallow und M.R. Truter, Chem. Ind., (1959) 564.
- 5 A.G. Swallow and M.R. Truter, Proc. Roy. Soc. Ser. A, 254 (1960) 205.
- 6 A.C. Hazell und M.R. Truter, Proc. Roy. Soc. Ser. A, 254 (1960) 218.
- 7 H. Musso und K. Flatau, Angew. Chem., 82 (1970) 390; Angew. Chem. Intern. Edit., 9 (1970) 379.
- 8 R. Allmann, K. Flatau und H. Musso, Chem. Ber., 105 (1972) 3067.
- 9 R.H. Fish, R.E. Lundin und W.F. Hadden, Tetrahedron Lett., (1972) 291.
- 10 M. Horike, Y. Kai, N. Yasuoka und N. Kasai, J. Organometal. Chem., 72 (1974) 441.
- 11 J.R. Hall und G.A. Swile, J. Organometal. Chem., 21 (1970) 237.
- 12 J.R. Hall und G.A. Swile, J. Organometal. Chem., 47 (1973) 195.
- 13 R. Allmann, Z. Kristallogr., 138 (1973) 366.
- 14 L. Pauling, J. Amer. Chem. Soc., 69 (1947) 542.
- 15 R.H. Fish, J. Amer. Chem. Soc., 96 (1974) 6664.
- 16 S.H.H. Chaston, S.E. Livingstone, T.N. Lockyer, V.A. Pickles und J.S. Shannon, Aust. J. Chem., 18 (1965) 673.
- 17 K. Dietrich, Dissertation Universität Karlsruhe, 1974.